
4

04
IB/G/Jun18/8520/1

Do not write
outside the

box

0 1 The algorithm in Figure 1 has been developed to automate the quantity of dog
biscuits to put in a dog bowl at certain times of the day. The algorithm contains
an error.

• Line numbers are included but are not part of the algorithm.

Figure 1

1 time  USERINPUT
2 IF time = 'breakfast' THEN
3 q  1
4 ELSE IF time = 'lunch' THEN
5 q  4
6 ELSE IF time = 'dinner' THEN
7 a  2
8 ELSE
9 OUTPUT 'time not recognised'
10 ENDIF
11 FOR n  1 TO q
12 IF n < 3 THEN
13 DISPENSE_BISCUIT('chewies')
14 ELSE
15 DISPENSE_BISCUIT('crunchy')
16 ENDIF
17 ENDFOR

0 1 . 1 Shade one lozenge which shows the line number where selection is first used
in the algorithm shown in Figure 1.

[1 mark]

A Line number 2

B Line number 4

C Line number 9

D Line number 12

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

5

05

Turn over ►

IB/G/Jun18/8520/1

Do not write
outside the

box

0 1 . 2 Shade one lozenge which shows the line number where iteration is first used
in the algorithm shown in Figure 1.

[1 mark]

A Line number 1

B Line number 8

C Line number 11

D Line number 13

0 1 . 3 Shade one lozenge which shows how many times the subroutine
DISPENSE_BISCUIT would be called if the user input is 'breakfast'.

[1 mark]

A 1 subroutine call

B 2 subroutine calls

C 3 subroutine calls

D 4 subroutine calls

0 1 . 4 Shade one lozenge which shows the data type of the variable time in the
algorithm shown in Figure 1.

[1 mark]

A Date/Time

B String

C Integer

D Real

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

6

06
IB/G/Jun18/8520/1

Do not write
outside the

box

0 1 . 5 State how many times the subroutine DISPENSE_BISCUIT will be called
with the parameter 'chewies' if the user input is 'lunch'.

[1 mark]

0 1 . 6 State how many possible values the result of the comparison
time = 'dinner' could have in the algorithm shown in Figure 1.

[1 mark]

0 1 . 7 The programmer realises they have made a mistake. State the line number
of the algorithm shown in Figure 1 where the error has been made.

[1 mark]

0 1 . 8 Write one line of code that would correct the error found in the algorithm in
Figure 1.

[1 mark]

8

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

19

19

Turn over ►

IB/G/Jun18/8520/1

Do not write
outside the

box

0 2 The following subroutines control the way that labelled blocks are placed in
different columns.

BLOCK_ON_TOP(column) returns the label of the block
on top of the column given as
a parameter.

MOVE(source, destination) moves the block on top of the
source column to the top of
the destination column.

HEIGHT(column) returns the number of blocks
in the specified column.

0 2 . 1 This is how the blocks A, B and C are arranged at the start.

Draw the final arrangement of the blocks after the following algorithm has run.

MOVE(0, 1)
MOVE(0, 2)
MOVE(0, 2)

[3 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

20

20
IB/G/Jun18/8520/1

Do not write
outside the

box

0 2 . 2 This is how the blocks A, B and C are arranged at the start.

Draw the final arrangement of the blocks after the following algorithm has run.

WHILE HEIGHT(0) > 1
 MOVE(0, 1)
ENDWHILE
MOVE(1, 2)

[3 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

21

21

Turn over ►

IB/G/Jun18/8520/1

Do not write
outside the

box

0 2 . 3 This is how the blocks A, B and C are arranged at the start.

Draw the final arrangement of the blocks after the following algorithm has run.

FOR c  0 TO 2
 IF BLOCK_ON_TOP(0) = 'B' THEN
 MOVE(0, (c+1) MOD 3)
 ELSE
 MOVE(0, (c+2) MOD 3)
 ENDIF
ENDFOR

This algorithm uses the MOD operator which calculates the remainder resulting
from integer division. For example, 13 MOD 5 = 3.

[3 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

22

22
IB/G/Jun18/8520/1

Do not write
outside the

box

0 2 . 4 Develop an algorithm using either pseudo-code or a flowchart that will move
every block from column 0 to column 1.

Your algorithm should work however many blocks start in column 0. You
may assume there will always be at least one block in column 0 at the start
and that the other columns are empty.

The order of the blocks must be preserved.

The MOVE subroutine must be used to move a block from one column to
another. You should also use the HEIGHT subroutine in your answer.

For example, if the starting arrangement of the blocks is:

Then the final arrangement should have block B above block A:

[5 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

23

23

Turn over ►

IB/G/Jun18/8520/1

Do not write
outside the

box

Turn over for the next question

14

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

24

24
IB/G/Jun18/8520/1

Do not write
outside the

box

0 3 The subroutine in Figure 3 is used to authenticate a username and password
combination.

• Array indexing starts at 0.
• Line numbers are included but are not part of the algorithm.

Figure 3

1 SUBROUTINE Authenticate(user, pass)
2 us  ['dave', 'alice', 'bob']
3 ps  ['abf32', 'woof2006', '!@34E$']
4 z  0
5 correct  false
6 WHILE z < 3
7 IF user = us[z] THEN
8 IF pass = ps[z] THEN
9 correct  true
10 ENDIF
11 ENDIF
12 z  z + 1
13 ENDWHILE
14 RETURN correct
15 ENDSUBROUTINE

0 3 . 1 Complete the trace table for the following subroutine call:

Authenticate('alice', 'woof2006')
[3 marks]

z correct

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

25

25
IB/G/Jun18/8520/1

Do not write
outside the

box

0 3 . 2 State the value that is returned by the following subroutine call:

Authenticate('bob', 'abf32')
[1 mark]

0 3 . 3 Lines 7 and 8 in Figure 3 could be replaced with a single line. Shade one
lozenge to show which of the following corresponds to the correct new line.

 [1 mark]

A IF user = us[z] OR pass = ps[z] THEN

B IF user = us[z] AND pass = ps[z] THEN

C IF NOT (user = us[z] AND pass = ps[z]) THEN

0 3 . 4 A programmer implements the subroutine shown in Figure 3. He replaces line
9 with

RETURN true

He also replaces line 14 with

RETURN false

Explain how the programmer has made the subroutine more efficient.
[2 marks]

7

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

22

22
IB/G/Jun19/8520/1

Do not write
outside the

box 0 4 A developer wants to simulate a simple version of the game of Battleships™. The
ships are located on a one-dimensional array called board. There are always
three ships placed on the board:

• one ‘carrier’ that has size three
• one ‘cruiser’ that has size two
• one ‘destroyer’ that has size one.

The size of the board is always 15 squares. A possible starting configuration is
shown in Figure 9 where the indices are also written above the board.

Figure 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The carrier, for example, is found at locations board[1], board[2]and
board[3].

A player makes a guess to see if a ship (or part of a ship) is located at a particular
location. If a ship is found at the location then the player has ‘hit’ the ship at this
location.

Every value in the board array is 0, 1 or 2.

• The value 0 is used to indicate an empty location.
• The value 1 is used to indicate if a ship is at this location and this location has

not been hit.
• The value 2 is used to indicate if a ship is at this location and this location has

been hit.

The developer identifies one of the sub-problems and creates the subroutine
shown in Figure 10.

Figure 10

SUBROUTINE F(board, location)
 h ← board[location]
 IF h = 1 THEN
 RETURN true
 ELSE
 RETURN false
 ENDIF
ENDSUBROUTINE

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

23

23

Turn over ►

IB/G/Jun19/8520/1

Do not write
outside the

box 0 4 . 1 The subroutine in Figure 10 uses the values true and false. Each element of
the array board has the value 0, 1 or 2.

State the most appropriate data type for these values.
[2 marks]

Values Data type

true, false

0, 1, 2

0 4 . 2 The developer has taken the overall problem of the game Battleships and has
broken it down into smaller sub-problems.

State the technique that the developer has used.
[1 mark]

0 4 . 3 The identifier for the subroutine in Figure 10 is F. This is not a good choice. State
a better identifier for this subroutine and explain why you chose it.

[2 marks]

New subroutine identifier:

Explanation:

0 4 . 4 The variable h in the subroutine in Figure 10 is local to the subroutine. State two
properties that only apply to local variables.

[2 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

24

24
IB/G/Jun19/8520/1

Do not write
outside the

box 0 4 . 5 Develop a subroutine that works out how far away the game is from ending.

The subroutine should:

• have a sensible identifier
• take the board as a parameter
• work out and output how many hits have been made
• work out how many locations containing a ship have yet to be hit and:
o if 0 then output 'Winner'
o if 1, 2 or 3 then output 'Almost there'.

[11 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

25

25
IB/G/Jun19/8520/1

Do not write
outside the

box

18

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

14

14
IB/G/Jun20/8520/1

Do not write
outside the

box 0 5 . 1 Four subroutines are shown in Figure 7.

Figure 7

SUBROUTINE main(k)
 OUTPUT k
 WHILE k > 1
 IF isEven(k) = True THEN

k ← decrease(k)
 ELSE

k ← increase(k)
 ENDIF
 OUTPUT k
 ENDWHILE
ENDSUBROUTINE

SUBROUTINE decrease(n)
 result ← n DIV 2
 RETURN result
ENDSUBROUTINE

SUBROUTINE increase(n)
 result ← (3 * n) + 1
 RETURN result
ENDSUBROUTINE

SUBROUTINE isEven(n)
 IF (n MOD 2) = 0 THEN
 RETURN True
 ELSE
 RETURN False
 ENDIF
ENDSUBROUTINE

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

15

15
Turn over ►

IB/G/Jun20/8520/1

Do not write
outside the

box

10

Complete the table showing all of the outputs from the subroutine call main(3)

The first output has already been written in the trace table. You may not need to use
all rows of the table.

[4 marks]

Output

3

0 5 . 2 Describe how the developer has used the structured approach to programming in
Figure 7.

[2 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

24

24
IB/G/Jun20/8520/1

Do not write
outside the

box 0 6 A developer has written a set of subroutines to control an array of lights. The lights
are indexed from zero. They are controlled using the subroutines in Table 2.

Table 2

Subroutine Explanation

SWITCH(n)
If the light at index n is on it is set to off.

If the light at index n is off it is set to on.

NEIGHBOUR(n)

If the light at index (n+1) is on, the light
at index n is also set to on.

If the light at index (n+1) is off, the light
at index n is also set to off.

RANGEOFF(m, n) All the lights between index m and index n
(but not including m and n) are set to off.

Array indices are shown above the array of lights.

For example, if the starting array of the lights is

0 1 2 3
off on off on

Then after the subroutine call SWITCH(2) the array of lights will become

0 1 2 3
off on on on

And then after the subroutine call NEIGHBOUR(0) the array of lights will become

0 1 2 3
on on on on

Finally, after the subroutine call RANGEOFF(0, 3) the array of lights will become

0 1 2 3
on off off on

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

25

25
Turn over ►

IB/G/Jun20/8520/1

Do not write
outside the

box 0 6 . 1 If the starting array of lights is

0 1 2 3 4 5 6

on off off on off off on

What will the array of lights become after the following algorithm has been followed?

a ← 2
SWITCH(a)
SWITCH(a + 1)
NEIGHBOUR(a - 2)

Write your final answer in the following array
[3 marks]

0 1 2 3 4 5 6

0 6 . 2 If the starting array of lights is

0 1 2 3 4 5 6

off off on off on on on

What will the array of lights become after the following algorithm has been followed?

FOR a ← 0 TO 2
 SWITCH(a)
ENDFOR
b ← 8
RANGEOFF((b / 2), 6)
NEIGHBOUR(b - 4)

Write your final answer in the following array
[3 marks]

0 1 2 3 4 5 6

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

26

26
IB/G/Jun20/8520/1

Do not write
outside the

box 0 6 . 3 If the starting array of lights is

0 1 2 3 4 5 6

off on off on off on off

What will the array of lights become after the following algorithm has been followed?

a ← 0
WHILE a < 3
 SWITCH(a)
 b ← 5
 WHILE b ≤ 6
 SWITCH(b)
 b ← b + 1
 ENDWHILE
 a ← a + 1
ENDWHILE

Write your final answer in the following array
[3 marks]

0 1 2 3 4 5 6

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

27

27
IB/G/Jun20/8520/1

Do not write
outside the

box

12

0 6 . 4 If the starting array of lights is

0 1 2 3 4 5 6

on on on on on on on

Write an algorithm, using exactly three subroutine calls, that means the final array of
lights will be

0 1 2 3 4 5 6

off off off off off off off

You must use each of the subroutines SWITCH, NEIGHBOUR and RANGEOFF
exactly once in your answer. If you do not do this you may still be able to get some
marks.

[3 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

20

20
IB/G/Jun22/8525/1A

Do not write
outside the

box 0 7 Figure 9 shows a subroutine represented using pseudo-code.

Figure 9

SUBROUTINE calculate(n)

 a  n
 b  0
 REPEAT

 a  a DIV 2
 b  b + 1
 UNTIL a ≤ 1
 OUTPUT b
ENDSUBROUTINE

The DIV operator is used for integer division.

0 7 . 1 Complete the trace table for the subroutine call calculate(50)

You may not need to use all the rows in the table.
[4 marks]

n a b OUTPUT

50

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

21

21
Turn over ►

IB/G/Jun22/8525/1A

Do not write
outside the

box 0 7 . 2 State the value that will be output for the subroutine call calculate(1)
 [1 mark]

0 7 . 3 The identifier for the variable b in Figure 9 was not a good choice.

State a better identifier for this variable that makes the algorithm easier to read
and understand.

 [1 mark]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

22

22
IB/G/Jun22/8525/1A

Do not write
outside the

box 0 7 . 4 A REPEAT…UNTIL iteration structure was used in Figure 9.

Figure 9 has been included again below.

Figure 9

SUBROUTINE calculate(n)

 a  n
 b  0
 REPEAT

 a  a DIV 2
 b  b + 1
 UNTIL a ≤ 1
 OUTPUT b
ENDSUBROUTINE

Figure 10 shows another subroutine called calculate that uses a
WHILE…ENDWHILE iteration structure.

Figure 10

SUBROUTINE calculate(n)

 a  n
 b  0
 WHILE a > 1

 a  a DIV 2
 b  b + 1
 ENDWHILE
 OUTPUT b
ENDSUBROUTINE

One difference in the way the subroutines in Figure 9 and Figure 10 work is:
• the REPEAT…UNTIL iteration structure in Figure 9 loops until the condition is true
• the WHILE…ENDWHILE iteration structure in Figure 10 loops until the condition is

false.

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

23

23
Turn over ►

IB/G/Jun22/8525/1A

Do not write
outside the

box Describe two other differences in the way the subroutines in Figure 9 and Figure 10
work.

 [2 marks]

1

2

Turn over for the next question

8

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

24

24
IB/G/Jun22/8525/1A

Do not write
outside the

box 0 8 . 1 The size of a sound file is calculated using the following formula:

size (in bits) = sampling rate * sample resolution * seconds

To calculate the size in bytes, the number is divided by 8

The algorithm in Figure 12, represented using pseudo-code, should output the size of
a sound file in bytes that has been sampled 100 times per second, with a sample
resolution of 16 bits and a recording length of 60 seconds.

A subroutine called getSize has been developed as part of the algorithm.

Complete Figure 12 by filling in the gaps using the items in Figure 11.

You will not need to use all the items in Figure 11.
[6 marks]

Figure 11

bit byte getSize OUTPUT

rate res RETURN sampRate

seconds size size + 8 size * 8

size / 8 size MOD 8 SUBROUTINE USERINPUT

Figure 12

SUBROUTINE getSize(____________, ____________, seconds)

______________  sampRate * res * seconds

size  ______________

______________ size

ENDSUBROUTINE

OUTPUT ______________(100, 16, 60)

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

25

25
Turn over ►

IB/G/Jun22/8525/1A

Do not write
outside the

box 0 8 . 2 A local variable called size has been used in getSize.

Explain what is meant by a local variable in a subroutine.
[1 mark]

0 8 . 3 State three advantages of using subroutines.
[3 marks]

1

2

3

Turn over for the next question

10

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

34

34
IB/G/Jun22/8525/1A

Do not write
outside the

box 0 9 A program is being written to simulate a computer science revision game in the style
of bingo.

At the beginning of the game a bingo ticket is generated with nine different key terms
from computer science in a 3 x 3 grid. An example bingo ticket is provided in
Figure 15.

Figure 15

CPU ALU Pixel

NOT gate Binary LAN

Register Cache Protocol

The player will then be prompted to answer a series of questions.

If an answer matches a key term on the player’s bingo ticket, then the key term will be
marked off automatically.

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

35

35
Turn over ►

IB/G/Jun22/8525/1A

Do not write
outside the

box 0 9 . 1 Figure 16 shows an incomplete C# program to create a bingo ticket for a player.

The programmer has used a two-dimensional array called ticket to represent a
bingo ticket.

The program uses a subroutine called generateKeyTerm. When called, the
subroutine will return a random key term, eg "CPU", "ALU", "NOT gate" etc.

Complete the C# program in Figure 16 by filling in the five gaps.

• Line numbers are included but are not part of the program.
[4 marks]

Figure 16

1 string[,] ticket = new string[,] {{"","",""},

 {"","",""},

 {"","",""}};

2 int i = 0;

3 while (i < 3) {

4 int j = ____ ;

5 while (j < 3) {

6 ticket[____ , ____] = generateKeyTerm();

7 ______________;

8 }

9 ______________;

10 }

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

36

36
IB/G/Jun22/8525/1A

Do not write
outside the

box 0 9 . 2 Each time a player answers a question correctly the ticket array is
updated; if their answer is in the ticket array then it is replaced with an
asterisk (*).

An example of the ticket array containing key terms and asterisks is
shown in Figure 17.

Figure 17

0 1 2

0 CPU ALU *

1 * * LAN

2 Register Cache *

Write a subroutine in C# called checkWinner that will count the number of
asterisks.

The subroutine should:
• take the ticket array as a parameter
• count the number of asterisks in the ticket array
• output the word Bingo if there are nine asterisks in the array
• output the total number of asterisks if there are fewer than nine asterisks in

the array.

You must write your own count routine and not use any built-in count function that
might be available in C#.

You should use meaningful variable name(s) and C# syntax in your answer.

The answer grid below contains vertical lines to help you indent your code.
[8 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

37

37
IB/G/Jun22/8525/1A

Do not write
outside the

box

12

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

7

07
Turn over ►

IB/G/Jun23/8525/1A

Do not write
outside the

box

1 0 Explain one advantage of the structured approach to programming.
[2 marks]

5

PMT

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

12

12
IB/G/Jun23/8525/1A

Do not write
outside the

box 1 1 Figure 5 shows an algorithm represented using pseudo-code.

The algorithm is for a simple authentication routine.

The pseudo-code uses a subroutine getPassword to check a username:

• If the username exists, the subroutine returns the password stored for that user.
• If the username does not exist, the subroutine returns an empty string.

Parts of the algorithm are missing and have been replaced with the labels to .

Figure 5

login  False
REPEAT

username  ''
WHILE username = ''

OUTPUT 'Enter username: '
username 

ENDWHILE
password  ''
WHILE password = ''

OUTPUT 'Enter password: '
password  USERINPUT

ENDWHILE
storedPassword  getPassword()
IF storedPassword = THEN

OUTPUT ' '
ELSE

IF password = storedPassword THEN
login  True

ELSE
OUTPUT 'Try again.'

ENDIF
ENDIF

UNTIL login = True
OUTPUT 'You are now logged in.'

PMT

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

13

13
Turn over ►

IB/G/Jun23/8525/1A

Do not write
outside the

box

Figure 6

-1 OUTPUT 0

username True SUBROUTINE

1 User not found ''

USERINPUT password Wrong password

State the items from Figure 6 that should be written in place of the labels in the
algorithm in Figure 5.

You will not need to use all the items in Figure 6.
[4 marks]

Turn over for the next question

PMT

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

4
Do not write
outside the

box

1 2 The algorithm in Figure 2 has been developed to automate the quantity of dog
biscuits to put in a dog bowl at certain times of the day.

• Line numbers are included but are not part of the algorithm.

Figure 2

1 time  USERINPUT
2 IF time = 'breakfast' THEN
3 q  1
4 ELSE IF time = 'lunch' THEN
5 q  4
6 ELSE IF time = 'dinner' THEN
7 q  2
8 ELSE
9 OUTPUT 'time not recognised'
10 ENDIF
11 FOR n  1 TO q
12 IF n < 3 THEN
13 DISPENSE_BISCUIT('chewies')
14 ELSE
15 DISPENSE_BISCUIT('crunchy')
16 ENDIF
17 ENDFOR

1 2 . 1 Shade one lozenge which shows the line number where selection is first used in
the algorithm shown in Figure 2.

[1 mark]

A Line number 2

B Line number 4

C Line number 9

D Line number 12

1 2 . 2 Shade one lozenge which shows the line number where iteration is first used in
the algorithm shown in Figure 2.

[1 mark]

A Line number 1

B Line number 8

C Line number 11

D Line number 13

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

5

Turn over ►

Do not write
outside the

box

Turn over ►

1 2 . 3 Shade one lozenge which shows how many times the subroutine
DISPENSE_BISCUIT would be called if the user input is 'breakfast' in
Figure 2.

[1 mark]

A 1 subroutine call

B 2 subroutine calls

C 3 subroutine calls

D 4 subroutine calls

1 2 . 4 Shade one lozenge which shows the data type of the variable time in the
algorithm shown in Figure 2.

[1 mark]

A Date/Time

B String

C Integer

D Real

1 2 . 5 State how many times the subroutine DISPENSE_BISCUIT will be called
with the parameter 'chewies' if the user input is 'lunch' in Figure 2.

[1 mark]

Turn over for the next question

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

14
Do not write
outside the

box

1 3 Four separate subroutines have been written to control a robot.

• Forward(n) moves the robot n squares forward.
• TurnLeft() turns the robot 90 degrees left.
• TurnRight() turns the robot 90 degrees right.
• ObjectAhead() returns true if the robot is facing an object in the next

square or returns false if this square is empty.

1 3 . 1 Draw the path of the robot through the grid below if the following program is
executed (the robot starts in the square marked by the ↑ facing in the direction of
the arrow).

Forward(2)
TurnLeft()
Forward(1)
TurnRight()
Forward(1)

[3 marks]

↑

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

15

Turn over ►

Do not write
outside the

box

Turn over ►

1 3 . 2 Draw the path of the robot through the grid below if the following program is
executed (the robot starts in the square marked by the ↑ facing in the direction of
the arrow). If a square is black then it contains an object.

WHILE ObjectAhead() = true
 TurnLeft()
 IF ObjectAhead() = true THEN
 TurnRight()
 TurnRight()
 ENDIF
 Forward(1)
ENDWHILE
Forward(1)

[3 marks]

↑

Turn over for the next question

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

16
Do not write
outside the

box

1 4 State two benefits of developing solutions using the structured approach.
[2 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

18
Do not write
outside the

box

1 5 The following subroutines control the way that labelled blocks are placed in
different columns.

BLOCK_ON_TOP(column) returns the label of the block
on top of the column given as
a parameter.

MOVE(source, destination) moves the block on top of the
source column to the top of
the destination column.

HEIGHT(column) returns the number of blocks
in the specified column.

1 5 . 1 This is how the blocks A, B and C are arranged at the start.

Draw the final arrangement of the blocks after the following algorithm has run.

MOVE(0, 1)
MOVE(0, 2)
MOVE(0, 2)

[3 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

19

Turn over ►

Do not write
outside the

box

Turn over ►

1 5 . 2 This is how the blocks A, B and C are arranged at the start.

Draw the final arrangement of the blocks after the following algorithm has run.

WHILE HEIGHT(0) > 1
 MOVE(0, 1)
ENDWHILE
MOVE(1, 2)

[3 marks]

Turn over for the next question

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

20
Do not write
outside the

box

1 5 . 3 Develop an algorithm using either pseudo-code or a flowchart that will move
every block from column 0 to column 1.

Your algorithm should work however many blocks start in column 0. You
may assume there will always be at least one block in column 0 at the start
and that the other columns are empty.

The order of the blocks must be preserved.

The MOVE subroutine must be used to move a block from one column to
another. You should also use the HEIGHT subroutine in your answer.

For example, if the starting arrangement of the blocks is:

Then the final arrangement should have block B above block A:

[4 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

21

Turn over ►

Do not write
outside the

box

Turn over ►

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

22
Do not write
outside the

box 1 6 A programmer has written the C# program in Figure 5 to add up the numbers
between one and five.

Figure 5
int total = 0;
for (int number = 1; number < 6; number++)
{
 total = total + number;
}
Console.WriteLine(total);

The program needs to be changed so that it also multiplies all of the numbers
between one and five.

Shade one lozenge next to the program that will do what the programmer
wants.

 [1 mark]

A

int total = 0;
int product = 1;
for (int number = 1; number < 6; number++)
{
 total = total + number;
 product = total * number;
}
Console.WriteLine(total);
Console.WriteLine(product);

B

int total = 0;
int product = 1;
for (int number = 1; number < 6; number++)
{
 total = total + number;
 product = product * number;
}
Console.WriteLine(total);
Console.WriteLine(product);

C

int total = 0;
int product = 1;
for (int number = 1; number < 6; number++)
{
 total = total + number;
 product = product * total;
}
Console.WriteLine(total);
Console.WriteLine(product);

D

int total = 0;
int product = 1;
for (int number = 1; number < 6; number++)
{
 total = total + number;
 product = (total + product) * number;
}
Console.WriteLine(total);
Console.WriteLine(product);

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

20

20
IB/G/Jun24/8525/1A

Do not write
outside the

box 1 7 Figure 8 shows a C# program.

Figure 8

static void First(int p1, int p2, int p3)
{

int v1 = p2 + p3;
Console.WriteLine(Second(v1, p1));

}

static int Second(int p1, int p2)
{

int v1 = p1 + p2;
if (v1 > 12)
{

v1 = v1 + Third(p1);
}
return v1;

}

static int Third(int p1)
{

if (p1 > 3)
{

return 2;
}
else
{

return 0;
}

}

1 7 . 1 State what will be displayed by the Console.WriteLine statement when the
subroutine First is called with the values 3, 4 and 4 for the parameters p1, p2
and p3

 [1 mark]

1 7 . 2 State what will be displayed by the Console.WriteLine statement when the
subroutine First is called with the values 3, 4 and 8 for the parameters p1, p2
and p3

[1 mark]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

24

24
IB/G/Jun24/8525/1A

Do not write
outside the

box 1 8 A program is being written to solve a sliding puzzle.

• The sliding puzzle uses a 3 x 3 board.
• The board contains eight tiles and one blank space.
• Each tile is numbered from 1 to 8
• On each turn, a tile can only move one position up, down, left, or right.
• A tile can only be moved into the blank space if it is next to the blank space.
• The puzzle is solved when the tiles are in the correct final positions.

Figure 10 shows an example of how the tiles might be arranged on the board at the
start of the game with the blank space in the position (0, 1).

Figure 11 shows the correct final positions for the tiles when the puzzle is solved.

The blank space (shown in black) is represented in the program as number 0

Figure 10 Figure 11

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

25

25

Turn over ►

IB/G/Jun24/8525/1A

Do not write
outside the

box Table 3 describes the purpose of three subroutines the program uses.

Table 3

Subroutine Purpose

getTile(row, column) Returns the number of the tile on the board in the
position (row, column)

For example:
• getTile(1, 0) will return the value 5 if it is

used on the board in Figure 12
• getTile(1, 2) will return the value 0 if it is

used on the board in Figure 12.

move(row, column) Moves the tile in position (row, column) to
the blank space, if the blank space is next to that
tile.

If the position (row, column) is not next to
the blank space, no move will be made.

For example:
• move(0, 2) would change the board shown

in Figure 12 to the board shown in Figure 13
• move(2, 0) would not make a move if used

on the board shown in Figure 12.

displayBoard() Displays the board showing the current position
of each tile.

Figure 12 Figure 13

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

26

26
IB/G/Jun24/8525/1A

Do not write
outside the

box 1 8 . 1 The C# program shown in Figure 14 uses the subroutines in Table 3, on page 25.

The program is used with the board shown in Figure 15.

Figure 14

if (getTile(1, 0) == 0)
{
 move(2, 0);
}
if (getTile(2, 0) == 0)
{
 move(2, 1);
}
displayBoard();

Figure 15

Complete the board to show the new positions of the tiles after the program in
Figure 14 is run.

[2 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

27

27

Turn over ►

IB/G/Jun24/8525/1A

Do not write
outside the

box Figure 16 shows part of a C# program that uses the getTile subroutine from
Table 3, on page 25.

The program is used with the board shown in Figure 17.

Figure 16

 int ref1, ref2;
 for (int i = 0; i < 3; i++)
 {
 for (int j = 0; j < 3; j++)
 {

if (getTile(i, j) == 0)
{

ref1 = i;
ref2 = j;

}
 }
 }

Figure 17

1 8 . 2 Which two of the following statements about the program in Figure 16 are true when
it is used with the board in Figure 17?

Shade two lozenges.
[2 marks]

A Nested iteration is used.

B The final value of ref1 will be 0

C The number of comparisons made between getTile(i, j)
and 0 will be nine.

D The outer loop, for (int i = 0; i < 3; i++), will
execute nine times.

E The values of i and j do not change when the program is
executed.

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

28

28
IB/G/Jun24/8525/1A

Do not write
outside the

box Figure 16 and Figure 17 are repeated below.

Figure 16

 int ref1, ref2;
 for (int i = 0; i < 3; i++)
 {
 for (int j = 0; j < 3; j++)
 {

if (getTile(i, j) == 0)
{

ref1 = i;
ref2 = j;

}
 }
 }

Figure 17

1 8 . 3 Explain the purpose of the first iteration structure in the program in Figure 16.
[1 mark]

1 8 . 4 Explain the purpose of the second iteration structure in the program in Figure 16.
 [1 mark]

1 8 . 5 State the purpose of the program in Figure 16.
[1 mark]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

30

30
IB/G/Jun24/8525/1A

Do not write
outside the

box 1 8 . 6 Table 4 shows a description of the getTile subroutine previously described in
more detail in Table 3, on page 25.

Table 4

Subroutine Purpose

getTile(row, column) Returns the number of the tile on the board in
the position (row, column)

Figure 18 and Figure 19 show example boards.

Figure 18 Figure 19

Write a C# program to:
• check that in the first row:
o the second tile number is one more than the first tile number
o the third tile number is one more than the second tile number

• display Yes when the row meets both conditions above
• display No when the row does not meet both conditions above.

For example:
• for the board in Figure 18, the program would display No
• for the board in Figure 19, the program would display Yes

You must use the getTile subroutine in your C# code.

You should use meaningful variable name(s) and C# syntax in your answer.

The answer grid below contains vertical lines to help you indent your code
accurately.

[4 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

31

31

Turn over ►

IB/G/Jun24/8525/1A

Do not write
outside the

box

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

32

32
IB/G/Jun24/8525/1A

Do not write
outside the

box 1 8 . 7 Table 5 describes the purpose of another two subroutines the program uses.

Table 5

Subroutine Purpose

solved() Returns true if the puzzle has been
solved.
Otherwise returns false

checkSpace(row, column) Returns true if there is a blank space
next to the tile on the board in the position
(row, column)

Otherwise returns false

Table 6 shows a description of the move subroutine previously described in more
detail in Table 3, on page 25.

Table 6

Subroutine Purpose

move(row, column) Moves the tile in position (row, column) to
the blank space, if the blank space is next to
that tile.
If the position (row, column) is not next to
the blank space, no move will be made.

Write a C# program to help the user solve the puzzle.

The program should:
• get the user to enter the row number of a tile to move
• get the user to enter the column number of a tile to move
• check if the tile in the position entered is next to the blank space
o if it is, move that tile to the position of the blank space
o if it is not, output Invalid move

• repeat these steps until the puzzle is solved.

You must use the subroutines in Table 5 and Table 6.

You should use meaningful variable name(s) and C# syntax in your answer.

The answer grid opposite contains vertical lines to help you indent your code
accurately.

[6 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

33

33

Turn over ►

IB/G/Jun24/8525/1A

Do not write
outside the

box

17

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

35

35

Turn over ►

IB/G/Jun24/8525/1A

Do not write
outside the

box 1 9 . 1 State one property of local variables that is not true for all variables.
[1 mark]

1 9 . 2 Using C#, write a subroutine to help a museum review the number of visitors in a
month.

The subroutine must:
• have the identifier countDays
• have the number of days a museum was open in the last month as a parameter
• get the user to enter the number of visitors to the museum for each of those days
• count how many of those days the museum had more than 200 visitors
• return the count.

You should use meaningful variable name(s) and C# syntax in your answer.

The answer grid below contains vertical lines to help you indent your code.
[6 marks]

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

36

36
IB/G/Jun24/8525/1A

Do not write
outside the

box

10

2.10 Structured Programming and Subroutines PhysicsAndMathsTutor.com

